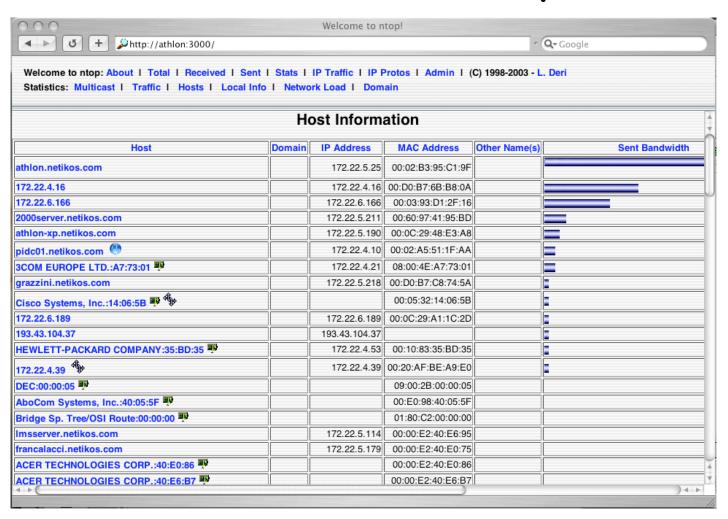
# The ntop Project: Open Source Network Monitoring

Luca Deri <deri@ntop.org>

# Agenda

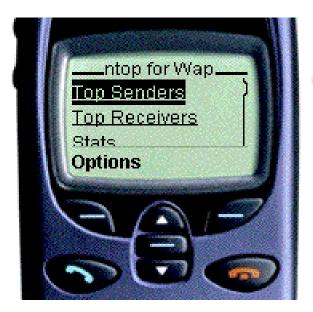
- 1. What can ntop do for me?
- 2. ntop and network security
- 3. Integration with commercial protocols
- 4. Embedding ntop
- 5. Work in progress

# 1. What can ntop do for me?

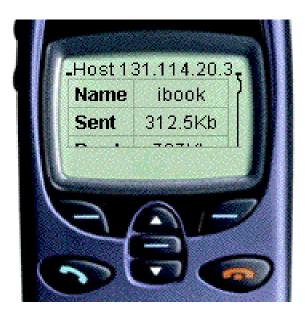



# What's ntop?

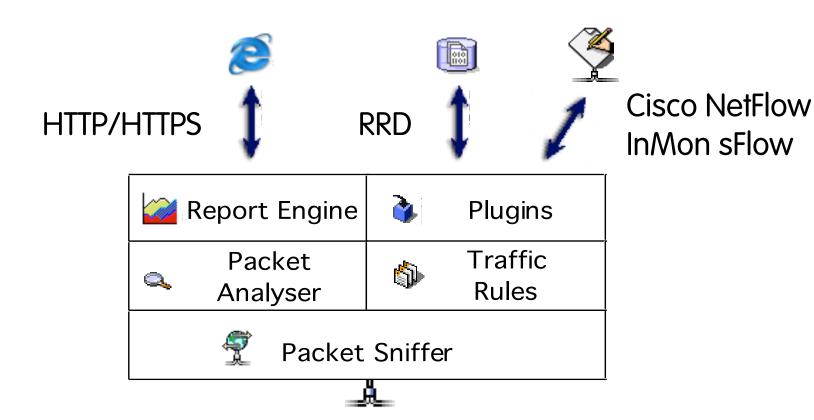
ntop is a simple, open source (GPL), portable traffic measurement and monitoring tool, which supports various management activities, including network optimization and planning, and detection of network security violations.




### Welcome to ntop







# ntop for WAP







### ntop Architecture





### Network Management: Some Goals

- (No) Connectivity.
- Performance.
- Availability (Failure Detection).
- Responsiveness to Change and Growth.
- Inventory.
- Security.

# What are the ntop Requirements?

- Traffic measurement.
- Traffic characterisation and monitoring.
- Detection of network security violations.
- Network optimisation and planning.

### What are the ntop Goals?

- Fit end-user needs (no programming required).
- Easy to use and customize.
- Standard Interface (Web, SNMP).
- Open and Portable.
- Good performance and minimal resource requirements.

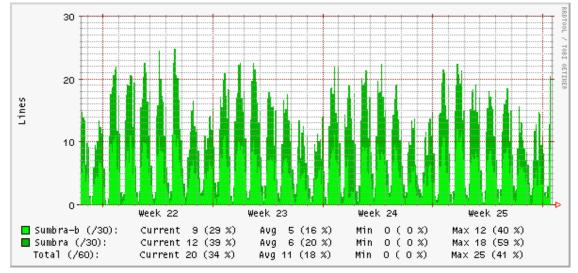
#### **Traffic Measurement**

- Data sent/received: Volume and packets, classified according to network/IP protocol.
- Multicast Traffic.
- TCP Session History.
- Bandwidth Measurement and Analysis.

# Traffic Characterisation and Monitoring

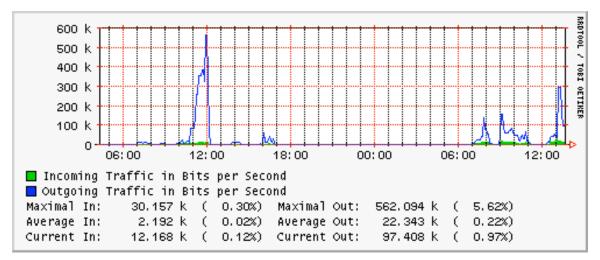
- Network Flows
- Protocol utilisation (# req, peaks/storms, positive/negative repl.) and distribution.
- Network Traffic Matrix.
- ARP, ICMP Monitoring.

### Network Optimisation and Planning


- Passive network mapping/inventory: identification of Routers and Internet Servers (DNS, Proxy).
- Traffic Distribution (Local vs. Remote).
- Service Mapping: service usage (DNS, Routing).

# 2. ntop and Network Security




# Defining a new Type of Anomaly Detection System [1/3]

 Various experiments performed on different networks confirmed the presence of some similarities on traffic.



# Defining a new Type of Anomaly Detection System [2/3]

 Simple bytes/packets curves are not very reliable for detecting networks problems, as they can present some peaks caused by various reasons (e.g. a multicast transmission).



# Defining a new Type of Anomaly Detection System [3/3]

The author decided to investigate whether it was possible to:

- Identify some selected traffic parameters that can be profitably used to model network traffic behaviour.
- Define traffic rules so that when such rules are violated there is necessarily a network anomaly (e.g. an abnormal network activity).

# What is an Anomaly?

The deviation from the network's expected behaviour that is defined by considering two kinds of knowledge:

- IP protocol specifications contained in RFCs, that needs to be satisfied by every host and network (static knowledge).
- Statistical traffic analysis that varies according to network characteristics and type of users (dynamic knowledge).

# ntop: Some Common Traffic Parameters

- ICMP ECHO request/response ratio
- ICMP Destination/Port Unreachable
- # SYN Pkts vs. # Active TCP Connections
- Suspicious packets (e.g. out of sequence)
- Fragments percentage
- Traffic from/to diagnostic ports (e.g. ident)
- TCP connections with no data exchanged

#### TCP/IP Stack Verification

- Network mapping: improper TCP three way handshaking (e.g. queso/nmap OS Detection).
- Portscan: stealth scanning, unexpected packets (e.g. SYN/FIN).
- DOS: synflood, invalid packets (ping of death, WinNuke), smurfing.
- IDS/Firewall elusion: overlapping fragments, unexpected SYN/ACK (sequence guessing).
- Intruders: peak of RST packets.

#### Intrusion Detection

- Trojan Horses (e.g. traffic at know ports BO2K).
- Spoofing: Local (more MAC addresses match the same IP address) and Remote (TTL  $\Delta$ ).
- Network discovery (via ICMP, ARP).
- Viruses: # host contacts in the last 5 minutes (warning: in this respect P2P apps behave as viruses/trojans!)

# 3. Integration with Commercial Network Monitoring Protocols

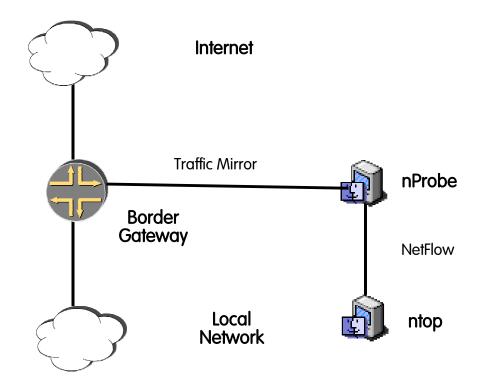
#### Cisco NetFlow

- Open standard for network traffic measurement defined by Cisco Systems
- Together with RMON (Remote MONitoring) is the industrial protocol for traffic measurement.
- Probes (usually on routers) send traffic flows (coded in NetFlow format) to collectors over UDP.

# Why shall ntop support commercial network monitoring protocols?

- It is not always possible to capture traffic in the place we want (e.g. border gateway)
- Traffic reports used in industry are often trusted only if they are based on commercial products/protocols/probes
- Solution: let ntop be a NetFlow/sFlow probe and collector to ease its acceptance in the industry.

### ntop: NetFlow and sFlow


- Currently ntop is able to collect/emit both NetFlow and sFlow flows.
- Due to ntop's original design, ntop is mostly a collector rather than a probe.
- Flows are very simple whereas ntop provides very complex statistics. Drawback: at highspeeds ntop looses packets due to all the calculations it has to perform.
- Solution: let an external probe feed ntop.

# Solution: nProbe+nTop [1/2]

- The community needed an open source probe able to bring NetFlow both into small and large networks.
- Ability to run at wire speed (at least until 1 Gb) with no need to sample traffic.
- Complete open source solution for both flow generation (nProbe) and collection (ntop)

26

# Solution: nProbe+nTop [2/2]



#### nProbe: Main Features

- Ability to keep up with Gbit speeds on Ethernet networks handling thousand of packets per second without packet sampling on commodity hardware.
- Support of NetFlow v5.
- Support for major OS including Unix, Windows and MacOS X.
- Resource (both CPU and memory) savvy, efficient, designed for environments with limited resources.
- Source code available under GNU GPL.

#### nProbe: Performance

| Packet Size      | Network Load | nProbe<br>Performance  |
|------------------|--------------|------------------------|
| 64               | 142 Mbit     | 277'340<br>packet/sec  |
| 64-1500 (random) | 953.6 Mbit   | 152'430<br>packet /sec |

# 4. Embedding ntop

# Why embedding ntop?

- In some cases it is easier to ship a simple appliance ready to use rather than provide a software application to install, configure, run.
- Modern embedded systems are based on OSs such as Linux, making easy the transition to them (no need to use proprietary/costly/ limited OSs such)
- Several manufacturers are selling cheap boxes suitable for this task.

#### nBox [1/2]

- Based on Cyclades TS/100 Appliance
- It runs nProbe 1.x
- Suitable for networks up to 10 Mbit of speed (e.g. xDSL, Frame Relay)



#### nBox [2/2]

- Easy configuration via the embedded web interface.
- Based on Linux/PPC
- Ability to export flows in NetFlow V5
- Ability to drive an LCD display

```
Total Traffic
1655 packets 220 KB
```



```
Current Traffic
7 p/s 4 Kb/s
```

# 5. Work in Progress



# nBox<sup>3</sup>

- Embedded appliance based on a box with 3 Ethernet (1 GE+2x10/100 or 3x10/100)
- Ability to work in pass-through mode (bridge)
- Availability: September 2003.



#### nProbe 3.x

- Support of NetFlow v5/v9.
- Support of a new, open, flow format named nFlow (www.nflow.org)
- Ability to handle both IPv4 and IPv6 (NetFlow v9 only).
- Improved application performance with respect to current 2.x.
- Availability: snapshot at (www.ntop.org), final version (fall 2003)

#### Kernel-based nProbe

- Kernel traffic collector for improving performance (1 Gbit at full speed with 64 bytes packets and commodity hardware)
- Status: it currently runs on Linux 2.4.
- Availability: fall 2003 (with nProbe 3.x)
- Future Plans: port to FreeBSD based on NetGraph.

# Wrap-up: ntop Availability

- Home Page: http://www.ntop.org/
- Platforms: Win32 and Unix.
- License: Gnu Public License (GPL).
- Distributions: Linux (Debian, Suse, RedHat, Slackware), BSD (MacOS X, OpenBSD, FreeBSD).