qland x509

Dirk-Willem van Gulik / dirkx@apache.org

Overview

Basics

Trust

Technical options
Conclusion

Questions

Basics |/3

Cyphers - symmetric encryption (DES, AES)

hard to break

does not leak

computationally light; longer keys ok
problem: shared secret

feature: shared secret

Basics 2/3

Public key cryptography
public (91) and private (7, | 3) pair
lockbox/valve function
expensive to calculate

can leak

Basics 3/3

Typical use (SSL, PGP, S'MIME)

Use PK to establish trust
Exchange a session key
Use symmetric crypt with session key

Compromise: avoids shared secret penalty -
yet allows trust, avoids leaking and intensive
calculations.

Trust

Prelude to a transaction
How much trust is needed ?
Who needs to trust whom !

Fortified by a receipt after the transaction
Non-repudiation

Business transactions are NOT symmetric.

Practical Trust

Burden/penalty for “leaking” often lopsided
Shared secrets too painful to manage
distribute, logistics

PK: verify possesion of private key matching
a public key

keep your own list or trust a third party

More Practical Trust

Keep your own list
It’s a pain
No blame-game when you get it wrong
(but you may need to do it anyway)

Let a third party do that: Certificates

Need to trust them; biiig waiver

(but it may be needed anyway (D&B,KvK))

Certificate

Descriptive metadata (name, email)

Validity/use “rules”
The Public key
Perhaps some signatures of others

Conveniently packaged (PGP, x509)

lTechnology

x509

binary file format to conveniently pack
public keys and some metadata

SSL, S/MIME

Proof possession of private key of
certificate shown to each other

Agree session key and Encrypt payload

Baseline Options

No certificate at all

Just a certificate (plain/self-signed)
proof that you a have a private key

A certificate signed by “someone else/CA”.
proof that you have a private key

and also showed that fact to the ‘CA’

RIPE / RIR

Prove that you are talking to RIPE
why ?

Prove ‘who’ you are
why ?

Implicit non repudiation

IF the private keys are ‘a key'.

Options

server
client

3rd Party
signed

RIPE
self signed

NOT
signed

3rd Party
signed

RIPE signed

Customer
self signed

No
Certificate

Options

server | 3rd Party RIPE
client signed self sighed sighed
3rd Party
signed

RIPE signed

Customer
self signed

@semantics - roma - san francisco - oslo - leiden E

© 2003 @Semantics S.R.L., All Rights Reserved, Commercial in Confidence.

(reality check)

Each option is available in COTS
“Trust” is configurable
as explicit user decision pain.
as ‘hidden’ and accepted.
And if you care enough in ‘real life’ (£€9)

Set aside dedicated hardware/room

other options

Hardware tokens
Chipcards
iButton’s
RSA SecurlD

Paperware

s/key, list of one time tokens

Client / Server

One ‘Server’

Many ‘Clients’ ‘

Asymmetric business relation: .

Clients want something from the server

Server acceptable to the client

+
Basis for a transaction

Server 3rd Party Signed

Clients just trusts a certain third party

This third party has established the servers
identity to its satisfaction.

That is ‘enough’ for the client to satisfy the
business related trust needed by the client
for the transaction with the server.

‘enough’: generally yes...

Client 3rd Party Signed

Server just trusts a certain third party

This third party has established the clients
identity to its satisfaction.

That is ‘enough’ for to satisfy the business
related trust needed by the server for the
transaction with the client.

‘enough’: generally no...

Server: RIPE signed

i.e.a Self signed certificate

Clients have to trust that the Server can
manage their own keys and identity

(and propably a whole lot more)

Thus: axiomatically good enough for the
business transaction

Client: RIPE signed

i.e. client generated certificate (public key)
is signed by RIPE.

Client does not care if RIPE signs carelessly

except if they sign a key with the same
metadata as their own ? non-issue

Server has to trust its own keys

Client: self sighed

Server needs to keep track of client
certificates of customers.

Really - this is just keeping a ‘list’

Server has to trust that the client did not
leak their key.

Roundup

You are going to trust something
Your own list of keys
just RIPE’s / just your customers
Your own ‘CA’
Or some third party CA
Premisse: that they key is ‘key’.

“CA’” role

Publish your ‘root’ certificate
CommonName (CN),Validity range
Fingerprints
Rollover procedure

or alternatively

have it signed by a “well known” CA

Problem: Revocation

Certificates go ‘bad’
Short Time to live
Revocation list

“Backoffice” check

Revocation: Short TTL

Need to re-issue a lot
Inherently less leaky - more secure

Inherently more automated - and thus
easier to subvert.

Easy to stop very early in the SSL exchange

Revocation Lists 1/2

List of invalid certificates
kept at the server
Must be distributed:

if third parties rely on your trust
statement/signature.

signed by the same private root-ish key
which originally vouched for the validity.

Revocation Lists 2/2

Issue versus recall of certificates

not symmetric in terms of biz/legal
meaning

always err on the safe side
very different admin roles.

yet both need access to sensitive key.

Revocation: backstop

First Check for validity (signature, dates)
easy, during SSL exchange
no valuable info on the web server
Then check with the backend
Lot of resources in motion

But you may need to do it anyway.

Bottom Line

What trust is needed !

Burden of trust on whose side !

Who is weak, who is strong !

Who gets blamed if it went wrong ?

Who can make sure it does not go wrong !

Who is not penalized when he fails ?

Conclusion

At a minumum

Self signed RIPE cert for the server must
be acceptable.

RIPE signed client certs ought to be
acceptable

Self signed certs of clients may be quite
acceptable due to workflow/biz-process.

Questions !

Dirk-Willem van Gulik <dirkx@apache.org>

@semantics - roma - san franosco oslo leiden

© 2003 @Sem s S.R.L, All Rights Res ial in Confiden

