Dual Stacking a NOC

Dave Wilson, RIPE-46
DW238-RIPE

Dual stack: network and staff

- What lay before us
- Phases of deployment
- First steps
- Managed services
- Rollout

The problem statement

The IPv4 network

- Core of Cisco 12000s, one or two each in four – no, five PoPs – wait, six...
- Access networks mostly 7200/7500s, some layer 3 switches
- One Juniper M20
- Linked by GigEther/STM-1

The IPv4 systems

 Heterogenous hardware and software

 Mostly UNIX based (Solaris, Tru64, Red Hat) and some Windows NT + 2000

 WWW, DNS, SMTP, POP, IMAP, Listserv, FTP, NNTP, Web proxy

The monitoring systems

 Mostly homegrown, open-source or customised commercial

 Link status with ping, link load with SNMP

 Alarms on web page and through email

The people

 July 2001: Just moved to new premises 15 staff, 10 technical One NOC team

July 2003:

 Final signoff on production service
 23 staff, 18 technical
 Three technical departments

The plan

The timeline

- Step 1: Single router, single staff member, tunnels
 - → July-December 2001
- Step 2: Cross-city link, some NOC participation, first native links
 - → January-December 2002
- Step 3: Dual stack network, full staff support
 - → January–June 2003

First steps

- Needed staff
 - → Hired Orla McGann
- Needed IP space
 - → /48 in 3FFE:: from Géant GTPv6
- Needed connectivity
 - → Tunnel from GTPv6
- Needed infrastructure
 - → Assigned a 7200 + server PC

Experimental deployment

- Setting up tunnels
- Configuring BGP4+
- Try out support on FreeBSD
- Deploy Apache 1/2, BIND 9

First experiences

 LIR for new address space, assigned to infrastructure and some LANs

 Connected first customer (TCD) over a tunnel

 Applied for RIPE space, set up additional tunnels to 6bone

First experiences

 People stole our AS number! (mistaken assumptions by customers)

 Started to notice the different behaviour of IPv4 and IPv6 BGP peers (e.g. filter lists)

Going native

- Tunnels only take you so far
 - → not production-like
- Needed native links without affecting production IPv4 network
- ATM is excellent for this
 - → 2Mbps link across city, second router
 - → 2Mbps Transatlantic to 6TAP
 - → Used existing ATM paths HFA

Going native

- Now had enough experience to assess the impact on the network in the future
- Affect purchasing decisions, make feature requests (three year kit lifespan)
- Assist in dual-stacking INEX
- Beta-test for some suppliers

Managed services

Dual stacking services

A number of factors helped us here

- Wide spread of skillsnot totally specialised
- Budget to replace old kit appeared

Interest among staff

Dedicated box

- Started with a dedicated DNS & web server, zone i pv6. heanet. i e
- Turned on router advertisement on office & server VLANs, using separate router for IPv6

Gained familiarity with the setup,
 but not production yet

HEAnet
DESCRIPTION OF THE PROTOTORY O

Router advertisement

 IPv4-only boxes are unaffected by router advertisement

- IPv6-capable boxes will receive an address and may originate IPv6 traffic
- Nothing else happens until you add AAAA records to the DNS

Upgrading services

Classes of problems:

- OS doesn't have the stack
- Software doesn't support the protocol
- Client transition funnies
- Supporting software incompatible (e.g. log analysis tools)

Deployment mechanism

- Migrate to new machine/install IPv6 in OS
 - → Immediately see IPv6 outbound
- Monitor for a bit
- Add AAAA record to DNS
- Monitor some more (depending on confidence)
- Call it production

Daemon changes

Not all of these changes were just for IPv6

- SMTP: Sendmail → Exim
- IMAP: UW → Courier-SSL
- HTTP: Apache → Apache 2
- NNTP: innd → Diablo
- DNS: bind8 \rightarrow bind9, nsd
- Listserv: depends on MTA
- Proxy: Squid → None

Rollout

- Heterogenous environment
- Cisco 7200/7200VXRs
 →12.2T, 12.2S, 12.3

- → Tested in IPv6-only environment
- → Reasonably certain of code stability
- → Change isn't too serious

- Cisco 12000/12400
 - \rightarrow 12.0ST \rightarrow 12.0S

- → No hardware forwarding (engine 3 linecards only)
- → Consistent IOS preferred
- → Bug count, change is bad

Cisco 7600

→ No IPv6 support (at the time)

- → Software support coming out now
- → Hardware support end of 2003
 - new supervisor card

- Juniper M20
 - → Full support when we needed it

First production 12000

- 17 Dec 2002 Phobos
 - → Enable IPv6 routing
 - → added to IS-IS and BGP mesh
 - brought up IPv6 to external peer (Abilene)
 - → brought up IPv6 BGP to Abilene
 - → tested routes
 - → performed by IPv6 team

First suprise

IPv4 route maps went "missing"

```
nei ghbor 62. 40. 103. 241 remote-as 20965
nei ghbor 62. 40. 103. 241 description Geant STM-16 Secondary
nei ghbor 62. 40. 103. 241 password 7 <removed>
nei ghbor 62. 40. 103. 241 send-community
nei ghbor 62. 40. 103. 241 route-map geantsec-in in
nei ghbor 62. 40. 103. 241 route-map geantsec-out out
nei ghbor 62. 40. 103. 241 filter-list 40 out

nei ghbor 146. 97. 40. 133 remote-as 786
nei ghbor 146. 97. 40. 133 description JANET
nei ghbor 146. 97. 40. 133 route-map janet-in in
nei ghbor 146. 97. 40. 133 filter-list 41 out
```


First suprise

IPv4 route maps went "missing"

```
neighbor 62. 40. 103. 241 remote-as 20965
neighbor 62. 40. 103. 241 description Geant STM-16 Secondary
neighbor 62. 40. 103. 241 password 7 <removed>
neighbor 146. 97. 40. 133 remote-as 786
neighbor 146. 97. 40. 133 description JANET
```

...traffic unaffected

First suprise

IPv4 route maps went "missing"

```
neighbor 62.40.103.241 remote-as 20965
neighbor 62. 40. 103. 241 description Geant STM-16 Secondary
neighbor 62.40.103.241 password 7 < removed>
neighbor 146.97.40.133 remote-as 786
neighbor 146.97.40.133 description JANET
address-family ipv4
neighbor 62.40.103.241 send-community
neighbor 62.40.103.241 route-map geantsec-in in
neighbor 62.40.103.241 route-map geantsec-out out
neighbor 62.40.103.241 filter-list 40 out
neighbor 146.97.40.133 route-map janet-in in
neighbor 146.97.40.133 filter-list 41 out
exit-address-family
```

BGP config

- Run separate v4 and v6 BGP sessions for everyone's sanity
- Activate IPv4 peers in IPv4 addr-family and deactivate IPv6 peers (+ vice versa)

```
address-family ipv4
neighbor 62.40.103.241 activate
no neighbor 2001:798:2019:10AA::5 activate
exit-address-family
```

Choice of IGP

- Options: RIPv6, OSPFv3, Integrated IS-IS
- On Cisco:
 - → OSPF runs as a separate process
 - → IS-IS uses single process, and address-families (like BGP)

Choosing an IGP

- Different IGPs for IPv4 and IPv6:
 - → Separate control, separate networks
 - → Separate failure modes
 - → Cross-protocol problems less likely
- Same IGPs for IPv4 and IPv6
 - → May get cross-pollination
 - → May require same layout for v4 + v6
 - → Easier troubleshooting

Developing documentation

- Dual-stack first router
 - → by ipv6 team, write up procedures
- Dual-stack second router
 - → by ipv6 team, revise procedures
- Dual-stack subsequent routers
 - → by operations, iterate till procs ready

Implementation

- 17 Dec 2002 Phobos
 - → by netdev, write up procedures
- 26 Mar 2003 Deimos
 - → by netdev, minor revision
- 2 Apr 2003 Charon
 - → by netops, netdev supervise
 - → continued every 1-2 weeks
- procedures handed over

Workarounds

 GE and ATM customers land on Cisco 7609

Provision separate ATM PVC

VLAN meddling

On the layer 3 switch:

```
interface GigabitEthernet3/3
description TCD [VI an101] (COLT DUB/DUB/LE-001892)
no ip address
no logging event link-status
speed nonegotiate
swi tchport
switchport access vlan 101
switchport mode access
interface VI an 101
description TCD link VLAN (Physical Gig3/3)
ip address 193. 1. 196. 149 255. 255. 255. 252
no logging event link-status
```

VLAN meddling

On the IPv6 router:

```
!
interface FastEthernet0/0.101
description Link to TCD site router
encapsulation dot10 101
ipv6 address 2001:770:8:3::1/64
ipv6 router isis backbone
!
```

This is transparent to the customer (but not gigabit in this case)

ATM workarounds

Separate PVCs over virtual path

 Requires you to dedicate bandwidth to the IPv6 PVC

Hardware compatibility

- 7200/7200VXR use software forwarding
- 7600 is dependent on Supervisor (Fourth quarter, 2003)
- 12000/12400 is dependent on linecard
 - → IPv6 in Engine 3 linecards ONLY
 - → Other linecards use software fwding
 - → Depends on ingress card

Management

- SNMP over IPv6 often not supported yet ...but this doesn't stop you monitoring
- On Cisco and Juniper, interface counters show total traffic, not per-protocol
- VLAN + ATM workarounds can separate this traffic out

Routing funnies

- Tunnels are really really annoying
 - → Maximum throughput limit
 - → Extra latency with every hop
 - → Routing policy not in RIPE DB, planning is difficult

Routing funnies

- Instituted more restrictive tunnel policy:
 - → Direct peers, yes
 - → Networks with no IPv6 access, yes
 - → Otherwise no

- RIPE Test Traffic IPv6 project
- Looking glasses, maps

Routing funnies

 Your IPv6 routing policy might not match your IPv4 routing policy

External connectivity

Transit in US from Abilene

- Transit in EU from Géant and Global Crossing (tunnel)
- Peering with local ISPs at INEX

 Roughly matches our physical & IPv4 layout

External connectivity

Little control over remote path

 If you don't have direct connection, the intervening hops might not be up to it

Routing uglies

- Ghost routes for old /35s
- Visible as absurdly long AS paths
 - → Gert's talk to ipv6-wg
- We haven't taken this leap yet

Observations

Typical traffic – small but very bursty

 Customers suddenly asking for connectivity with no notice

Approaching signoff

- Completed internal documentation
- Tutorial and test lab for staff

1PV6 LAB.

- 1. BRING UP TUNNEL BETWEEN KERMIT + STATLER
 ADDRESS RANGE 2001: DB8: 200:211/64, SOURCE LOSPBACK INTS.
- 2. BRING UP IS-IS BETWEEN KERMIT AND MSPIGGY INCLUDING LOOPBACKS
- 3. BRING UP IBGP (AS 1) BETWEEN KERMIT + MSPIGGY
- 4. BRING UP EBGP (AS 2) TO STATLER
- 5. PING 2001: D88: 200: 1: FROM MSPIGGY

Production and Signoff

- Final router dual-stacked 16 July 2003
- Cisco DoS announced 17 July 2003
- Final signoff 29 July 2003
- 2 native customers, 2 tunnelled, more delegated/asking

Lessons

- Took time but not really money
 - → but purchasing decisions now will affect performance in 2006
- Customers do not give advance notice of demand
- Some stimulation of interest nationally

Questions?

